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Background

* Why quantum computing Is potentially more powerful than
classical computing?
* “Magic”, a source of guantum computational advantages

* Noise can significantly undermine the resource features of
gquantum systems.
* Noisy Intermediate-scale quantum (NISQ) technologies
* Quantum error correction

* Has been investigated for features like computational supremacy,
entanglement ...

Aharonov D, Gao X, Landau Z, et al. A polynomial-time classical algorithm for noisy random circuit sampling[C]//STOC. 2023: 945-957.

Contreras-Tejada P, Palazuelos C, de Vicente J I. Asymptotic survival of genuine multipartite entanglement in noisy quantum networks depends on the topology[J]. PRL, 2022, 128(22): 220501.



Background

* How noise effects impact magic?




Background

* How noise effects impact magic?

* Noise drives pure states to mixed ones, and as It intensifies, the
magic gradually decays and eventually vanishes at a certain point
as the state I1s brought inside the stabilizer hull.
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a magical pure state



* How nolise effects Impact magic in large systems with different
entanglement structures?

* Generates Insights Into
* Interplay between magic and entanglement
* Design of circults
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Preliminaries

* A neat yet highly versatile model for entangled magic states:
hypergraph states.
* many-body physics
* measurement-based quantum computing (MBQC)

* Also provide an apt playground for concretely investigating the
relation between entanglement structures and magic properties

Levin M, Gu Z C. Braiding statistics approach to symmetry-protected topological phases[J]. PRB, 2012, 86(11): 115109.
Miller J, Miyake A. Latent computational complexity of symmetry-protected topological order with fractional symmetry[J]. PRL, 2018, 120(17): 170503.

Raussendorf R, Briegel H J. A one-way quantum computer[J]. PRL, 2001, 86(22): 5188.
Miller J, Miyake A. Hierarchy of universal entanglement in 2D measurement-based quantum computation[J]. npj Quantum Information, 2016, 2(1): 1-6.

Liu Z W, Winter A. Many-body quantum magic[J]. PRX Quantum, 2022, 3(2): 020333.



Preliminaries

* A neat yet highly versatile model for entangled magic states:
hypergraph states.

E ={{3,4},{1,2,3},{2,3,4},{1,2,3,4}}

‘\Ifg> = CZg4CCZlQ3CCZQ3460621234|_|_4>




Preliminaries

* A neat yet highly versatile model for entangled magic states:

hypergraph states.

Let C""1Z = diag(1,---,1,—1) denote the multi-
controlled-Z gate on n-qubits, with C°Z = Z.

Given a hypergraph G = {[n|,E}, where [n| :=
{1,---,n} is the set of vertices and E C 2™ is the set of
hyperedges, an associated hypergraph state is defined by

o) =[] 1z ),

ec )

where Clél=1Z, is the multi-controlled-Z gate applied to
the qubits in e C [n].

The number of vertices contained in an edge e is re-
ferred to as the degree of the edge.



Preliminaries

* Magic measure for mixed states: robustness of magic (RoM)

= min 2a + 1 =(a+1Dpt —ap ,a>0
Pw_ESTABH{ +1[p=(a+1)p" —ap™,a>0}

1. R(-) is faithful, i.e., R(c) = 1 iff 0 € STAB;

2. For all trace-preserving stabilizer channels &, we

have R (£(p)) < R(p);
3. R(c ® p) = R(p) for 0 € STAB;

4. For a set of states {pr} and a set of real numbers
{pr} satisfying >, pr = 1, the convezity of R(-)
implies that R (3, pror) < D . vl R(pk);

5. Classical simulation overhead: R(p)?.

Howard M, Campbell E. Application of a resource theory for magic states to fault-tolerant quantum computing[J]. PRL, 2017, 118(9): 090501.



Noise robustness and threshold of magic

* Consider the n-gubit independent depolarizing noise
ES™ = ((1 — NI + AG)®", where G(0) = Tr(o)Iy/2.

(a)

@\

For an n-qubit hypergraph state ¥ := |U)(¥|, and a
subset of qubits I C [n], consider tracing out the qubits
in I. We have

1
Try(P) = ST Z p(b). (1)
bez,"

where W(I'P) are (n — |I|)-qubit hypergraph states ob-
tained by removing vertices and edges from W.




Noise robustness and threshold of magic

» The decay profile of magic: R (5" (p))
* The magic noise threshold above which the magic is eliminated.

Definition 1. For a state p and € > 0, we call A¥(p) :=
mfR(SS?”(p))glJre)\ the e-magic noise threshold. For a

family of states {p,,} where p,, is an n-qubit state, if for
a fixed € > 0 we have liminf \*(p,,) > 0, we say {p,, } has
n—od

a non-vanishing magic threshold.



Noise robustness and threshold of magic

« Warm up example: ® = |CCZ){CCZ|, where |CCZ) := CCZ|+3)

R(ES™(®)) = maxicjcga;(A), where a;(\) =
Tr (5??3(@)}1;;) are polynomials in A with degree at most
3, with A; some Hermitian matrices.

* Computing the decay profile for
n > 5 is hard in general.
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Noise robustness and threshold of magic

* Key technigue: upper and lower bounds for noisy RoM.
* Upper bound: by convexity of R(-)

R (EL™(p)) < Z (1 — N HINIR (Tr s (p))

* Lower bound: by R(p) = D(p) := 2= 3 peps ITr(Pp)]

R(ET(P) > = Y (1= N |Tr(Pp)

Howard M, Campbell E. Application of a resource theory for magic states to fault-tolerant quantum computing[J]. PRLs, 2017, 118(9): 090501.
Leone L, Oliviero S F E, Hamma A. Stabilizer rényi entropy[J]. PRL, 2022, 128(5): 050402.



Noise robustness and threshold of magic
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Result 1. High-degree edges are fragile

* Hypergraph state ®,, = |C*"1Z){C"1Z|, a single edge containing
all qubits.
« we can show that R(|C"*"1Z)) < 5, for all n
* magic spreads more extensively, more exposed to noise as n INncreases

2(1=30/4)" SR(EL™ (D)) <1+4(1—N/2)"

Theorem 1. For a fived noise rate 0 < A < 1 and any
e > 0, the family {|C"1Z)} has magic threshold \* =
O(n1).




Result 1. High-degree edges are fragile

Theorem 1. For a fivred noise rate 0 < A < 1 and any
e > 0, the family {|C" 1 Z)} has magic threshold \* =
O(n™1).

« C"~1Z variants of magic state distillation and injection?

At least Q((1 — A/2)™™) copies of E"(®,,) are required
to achieve constant RoM, and therefore, to distill &,
with constant success probability.



Result 1. High-degree edges are fragile

* Furthermore, In an arbitrary hypergraph state ¥, the magic
contributed by high-degree edges is fragile to noise.

Theorem 2. Let ¥V be an n-qubit hypergraph state. Con-
sider adding K edges e1,--- ,ex C [n] to ¥ to obtain a
new state ®. Then R (EL™ (P)) is upper bounded by

A\ [Yiese;|
R(E (W) +Co > M+n(1-5) 7,
0#£JC[K]
where C'y :=  max 72(\11(] ’S)) 1S a constant depend-

IC[n],SEZl;l
g on W.




Result 2. Local magic and magic threshold

For an n-qubit state p, define its maximum K-local RoM

by

Mk (p) = Jc[iﬂl,?ﬁ:KR (Tr7(p))

where J := [n] — J.

For a family of states {p,, }, if there exists a constant K
such that liminf Mg (p,) > 1 (or lim Mg (p,) = 1), we
n— o0 n—oo

say {p.} has non-vanishing (or vanishing) local magic.



Result 2. Local magic and magic threshold

Proposition 3. Suppose {p,} is a family of states with
non-vanishing local magic, then it has a non-vanishing
magic threshold.

Let J, (|J,| = K) denote the K qubits on which p,
has maximum RoM. Since partial trace commutes with
local noises, to ensure £ (p,,) € STAB,,, we must have

SEQK (Trx (pn)) € STABg. Since the K-qubit state

Tr+—(pn) has RoM > constant for all sufficiently large

n, it can withstand constant rate of noises before falling
into STAB K-




Result 2. Local magic and magic threshold

Theorem 4. There exist efficiently preparable families of
many-body states with vanishing local magic yet a non-
vanishing magic threshold.

For example, consider the family of 3-complete hyper-
graph states {I',,}, where I',, corresponds to the hyper-
graph with n vertices and all possible edges of degree 3.
Evidently, {I',,} has gate complexity O(n?).




Result 2. Local magic and magic threshold

Theorem 4. There exist efficiently preparable families of
many-body states with vanishing local magic yet a non-
vanishing magic threshold.

For any constant K, the reduced density matrix of I',,
on K qubits is a convex combination of four (n— K )-qubit
hypergraph states, with all four coefficients approaching
1/4 as n — oo, which can be proved to form a stabi-
lizer state. Specifically, in Proposition 13, we show that
Mg(T,) <1+ 21T55-3 which tends to 1 for all K as
n — 0o, indicating that {I',,} has vanishing local magic.




Result 2. Local magic and magic threshold

Theorem 4. There exist efficiently preparable families of
many-body states with vanishing local magic yet a non-
vanishing magic threshold.

By upper and lower bounds for R(Sf?” (Fn)), the
magic threshold for {I',} satisfies 0.39 < A¥ < 0.78,
demonstrating a non-vanishing threshold.




Result 2. Local magic and magic threshold

* Insights into interplay between magic and entanglement:

I',, has a vanishing amount of magic even when restricted
to ©(n) qubits: dividing I',, evenly among 4 parties re-
sults in a vanishing amount of magic for each party, as

My a(Ty) < 1421778 51

However, the total magic remains substantial, as

R(T,) > D(I,) = 6(27/2).



Result 2. Local magic and magic threshold

* Insights into interplay between magic and entanglement:

The “non-local magic” in these states is embedded in
entanglement and can withstand a constant rate of noise.
We anticipate that such states may find interesting ap-
plications through “magic hiding” or “magic secret shar-

: 2

ing” .



Noise robustness and threshold of magic

Hypergraph state ¥ |Edge degree Threshold R(EL™(W)) upper bound | R(EY™(V)) lower bound | Local magic
|CCZ) Ay =1/3 R(EL™ (W) = maxi<j<o a;(A) [Fig. 3] 23/9
Union Jack lattice 3 Ay > constant > 0 O((2-N)") — 1.0078
3-complete hypergraph 0.39 <A <078 |1+ 2" (1 — (1 —27°)N)" [ =292 -3 /4)" | 1+ 0(27"7) |
4-complete hypergraph 4 Ay > constant > 0 O((2-N") D (EX™(¥)) [Fig. 5] 1.25 + o(1)
High-degree hypergraphs >m Ai = 0(1/m) 1 + poly(m)(1 — A/2)™ — 14 o(1)
|IC" 1 Z) n \i=0O(1/n) 14+4(1—\/2)" ~2(1—3)/4)" 1+0((1/2)™)
Qudit [C" ™ Z) n Ao > 0.42 (d=3) [1+4Mq(d—1)" (1 — <=2N)" |1+ 2sn(E27(P)) [Fig. 6]|1 + O ((1)")




Take home messages

* Decay RoM of hypergraph states under independent noise.
* High-degree edges are fragile

* 3-complete hypergraph state
* vanishing local magic (even on ©(n) qubits)
* non-vanishing magic threshold



Outlook

* |dentify the most robust hypergraph states.

* The necessary and sufficient conditions for a family of states to
have a non-vanishing magic threshold.

* The noise robustness of MBQC power.



Thank you for
your attention!
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